Diet composition, not calorie intake, rapidly alters intrinsic excitability of hypothalamic AgRP/NPY neurons in mice
نویسندگان
چکیده
Obesity is a chronic condition resulting from a long-term pattern of poor diet and lifestyle. Long-term consumption of high-fat diet (HFD) leads to persistent activation and leptin resistance in AgRP neurons in the arcuate nucleus of the hypothalamus (ARH). Here, for the first time, we demonstrate acute effects of HFD on AgRP neuronal excitability and highlight a critical role for diet composition. In parallel with our earlier finding in obese, long-term HFD mice, we found that even brief HFD feeding results in persistent activation of ARH AgRP neurons. However, unlike long-term HFD-fed mice, AgRP neurons from short-term HFD-fed mice were still leptin-sensitive, indicating that the development of leptin-insensitivity is not a prerequisite for the increased firing rate of AgRP neurons. To distinguish between diet composition, caloric intake, and body weight, we compared acute and long-term effects of HFD and CD in pair-fed mice on AgRP neuronal spiking. HFD consumption in pair-fed mice resulted in a significant increase in AgRP neuronal spiking despite controls for weight gain and caloric intake. Taken together, our results suggest that diet composition may be more important than either calorie intake or body weight for electrically remodeling arcuate AgRP/NPY neurons.
منابع مشابه
Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus.
The hypothalamic arcuate nucleus (ARH) is a brain region critical for regulation of food intake and a primary area for the action of leptin in the CNS. In lean mice, the adipokine leptin inhibits neuropeptide Y (NPY) and agouti-related peptide (AgRP) neuronal activity, resulting in decreased food intake. Here we show that diet-induced obesity in mice is associated with persistent activation of ...
متن کاملEffect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides.
The fatty acid synthase inhibitor, C75, acts centrally to reduce food intake and body weight in mice. Here we report the effects of C75 on the expression of key orexigenic [neuropeptide Y (NPY), agouti-related protein (AgRP), and melanin-concentrating hormone] and anorexigenic [pro-opiomelanocortin (POMC) and cocaine-amphetamine-related transcript (CART)] neuropeptide messages in the hypothalam...
متن کاملRapamycin Ameliorates Age-Dependent Obesity Associated with Increased mTOR Signaling in Hypothalamic POMC Neurons
VIDEO ABSTRACT The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for body-weight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here, we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in ...
متن کاملFunctional requirement of AgRP and NPY neurons in ovarian cycle-dependent regulation of food intake.
In female mammals including rodents and humans, feeding decreases during the periovulatory period of the ovarian cycle, which coincides with a surge in circulating estrogen levels. Ovariectomy increases food intake, which can be normalized by estrogen treatment at a dose and frequency mimicking those during the estrous cycle. Furthermore, administration of estrogen to rodents potently inhibits ...
متن کاملCannabinoid type 1 receptor-containing axons innervate NPY/AgRP neurons in the mouse arcuate nucleus
OBJECTIVES Phytocannabinoids, such as THC and endocannabinoids, are well known to promote feeding behavior and to control energy metabolism through cannabinoid type 1 receptors (CB1R). However, the underlying mechanisms are not fully understood. Generally, cannabinoid-conducted retrograde dis-inhibition of hunger-promoting neurons has been suggested to promote food intake, but so far it has not...
متن کامل